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Abstract. The expanded measurement uncertainty of a complex quantity is a

region in the complex plane surrounding the measured value. This paper considers

different shaped uncertainty regions in the form of ellipses, circles, rectangles and

parallelograms. The different types of region are compared, under a variety of

measurement error conditions, with regard to coverage probability and relative area.

Elliptical confidence regions are commonly used in multivariate statistics. However,

this shape has not been adopted widely in metrology, perhaps because there is no simple

way to report the extent of an elliptical region. The other shapes considered are easier

to use. Unfortunately, the coverage probability of circular uncertainty regions is found

to be sensitive to both the form of the distribution of measurement errors and to the

number of degrees of freedom, making this shape a poor choice. Parallelograms and

rectangles both performed well, with parallelograms giving the best results overall.

† c© 2013 BIPM and IOP Publishing Ltd. This is an author-created, un-copyedited version of an

article accepted for publication (Metrologia, 50 (2013) pp 490-498, doi:10.1088/0026-1394/50/5/490 ).
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1. Introduction

The expanded measurement uncertainty of a complex quantity is a region in the complex

plane surrounding the measured value. The shape of that region is arbitrary, so

this article considers using ellipses, circles, rectangles and two forms of parallelogram

to report the expanded uncertainty of measurement results expressed in rectangular

coordinates.‡ The performance of these uncertainty regions is compared in terms of the

coverage probability, or level of confidence, achieved under different measurement error

conditions. The study also compares the sizes of the regions generated, because, in cases

where different shaped regions achieve close to the desired nominal coverage probability,

smaller regions convey more informative results.

An ellipse is often used as a confidence region for the mean of a bivariate Gaussian

distribution in multivariate statistics [2, §5.4], making this shape a natural candidate for

measurement uncertainty [3]. Unfortunately, the extent of an elliptical region is difficult

to report in a simple way. Alternatively, circular and rectangular regions are easy to

describe, but do not use in their construction all the uncertainty information available.

Parallelograms, on the other hand, do incorporate full uncertainty information in their

construction and may therefore be expected to perform better than circles and rectangles

in certain circumstances. Numerical studies presented here show that parallogrammatic

regions can achieve nominal coverage probability over a wide range of error conditions

and are only slightly larger than the corresponding uncertainty ellipses.

Reporting of expanded uncertainties is common for measurements of real-valued

quantities. However, to the author’s knowledge, only one national metrology institute

currently uses a region to report the measurement uncertainty of a complex quantity [4].

More often, the components of a complex quantity are reported as expanded uncertainty

intervals calculated according to the recommendations of the Guide to the Expression of

Uncertainty in Measurement for univariate results [5]. However, this is only appropriate

if the results are to be treated as independent estimates of univariate quantities. If,

for example, a pair of 95% uncertainty intervals for the real and imaginary components

were to be combined to form a rectangular region for the complex quantity, the coverage

probability of that region would only be about 90%.

The convenience of a particular shape of uncertainty region may depend on the

intended use of results. For instance, in the context of radio and microwave frequency

impedance measurements, the complex-valued properties of a number of stable reference

objects (sometimes called a verification kit) may be carefully measured by a calibration

laboratory. The owner can then use the same objects to verify that a measuring

instrument is operating correctly, by comparing the reported values with measurements

of the objects made on the instrument. If the differences between reported and measured

values fall within an acceptable tolerance region, then the instrument’s adjusted state

is verified. In such cases, the extent of the region should be presented in a way that can

‡ Uncertainty regions for complex quantities expressed in polar coordinates are the subject of another

paper [1].
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easily compared with measured values.

The geometric simplicity of circular uncertainty regions is appealing. Unfortunately,

a recent study has identified problems with the coverage probability of circular regions

when measurement errors are correlated [6]. Circular regions may also be attractive

because of a simple method for evaluating complex uncertainty, based on the assumption

of independent and equal error-variances in the real and imaginary components [7]. This

method is easier to apply than the mathematical techniques needed for full bivariate

uncertainty propagation and it produces results that may be expressed in terms of

circular uncertainty regions.

Supplement 2 to the Guide to the Expression of Uncertainty in Measurement

describes the construction of both elliptical and rectangular uncertainty regions when

degrees of freedom are infinite [8, §6.5.2.3]. To handle finite degrees of freedom,

the Supplement proposes a numerical Monte Carlo method that, if used to construct

elliptical uncertainty regions, would lead to the essentially the same elliptical regions

considered here.

The paper is organised as follows. A numerical method used to assess the coverage

probability of different shapes is described in §1.3 and §1.4. Sections 2, 3, 4 and 5 then

present, respectively, the construction of ellipses, circles, rectangles and parallelograms

as uncertainty regions and evaluate their performance. The results are discussed in §6.

1.1. Notation

Real-valued quantities are written in plain italic font, like x. Complex-valued quantities

are written in bold italic font, like x. Greek characters are written in plain style when

representing real values and in bold when representing a complex values, e.g., ν and µ.

Symbols representing matrices are written in bold upright font, like v. The imaginary

unit j, where j2 = −1, is used, e.g., x = xre + j xim (note too, the use of subscript labels

identifying the real and imaginary components).

1.2. Information available about uncertainty

The uncertainty of the measured value of a complex quantity depends on the

measurement uncertainty of the real and imaginary components and on any correlation

between those estimates. A covariance matrix is a convenient representation of this

information

v =

[

v11 v12
v21 v22

]

,

where v11 = u2(xre), with u(xre) the standard uncertainty of the real component

estimate, v22 = u2(xim), with u(xim) the standard uncertainty of the imaginary

component estimate, and v12 = v21 is the covariance between the estimates (v21 =

ru(xre)u(xim), where r is the correlation coefficient).
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Covariance matrix elements can be calculated from a sample of N observations xi

as follows. The sample mean is

x = xre + j xim =
1

N

[

N
∑

i=1

xi·re + j

N
∑

i=1

xi·im

]

then

v11 =
1

N(N − 1)

N
∑

i=1

(xi·re − xre)
2

and

v22 =
1

N(N − 1)

N
∑

i=1

(xi·im − xim)
2

and the covariance is

v12 = v21 =
1

N(N − 1)

N
∑

i=1

(xi·re − xre) (xi·im − xim) .

The number of degrees of freedom associated with the sample is ν = N − 1.

The covariance matrix of a measurement result may also be obtained by propagation

of uncertainty through a measurement equation [3, 8, 9]. In that case, a method of

calculating an effective number of degrees of freedom is also available [10].

1.3. Assessment of coverage probability

A numerical procedure is used to estimate the coverage probability, or level of confidence,

for different methods of constructing an uncertainty region. Coverage probability is

taken to be the long-run relative frequency, in independent measurements, that a

procedure generates regions covering the measurand [11]. This can be assessed by

simulating a large number of independent measurements and observing the relative

frequency with which regions cover the measurand in a well-defined situation [12].

The simulations carried out in this study test a method of uncertainty calculation

under a range of specific conditions, whereas in actual measurements the conditions

encountered will never be known exactly. Nevertheless, we expect a method of

calculating uncertainty to perform well under all conditions that could occur in a

measurement. So poor performance under any reasonable set of simulated conditions

must be of concern.

To define a specific set of measurement conditions, a number of simulation

parameters are fixed: the degrees of freedom ν, the covariance matrix of the underlying

distribution of measurement errors Σ and the measurand µ. Without loss of generality,

µ = 0 here in all cases. The simulation algorithm for a particular method of constructing

an uncertainty region repeats the following steps N = 105 times and records the success-

rate.
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(i) A random value is drawn from a bivariate Gaussian distribution with a mean of

µ = 0 and a covariance matrix Σ. The value drawn is considered to be the outcome

of a simulated measurement of µ.

(ii) A random 2 × 2 matrix vi is drawn from a two-dimensional Wishart distribution

with covariance matrix Σ and degrees of freedom ν. vi is associated with the

uncertainty of xi as an estimate of µ.

(iii) Together, xi, vi and ν are used to construct an uncertainty region with a nominal

coverage probability of 95%.

(iv) If that region covers µ, the calculation is deemed a ‘success’.

The success-rate obtained provides an estimate of the coverage probability. The

standard deviation of this estimate can be calculated by assuming a binomial probability

distribution of outcomes. For a probability of success p = 0.95 and N = 105,

σ =
√

p(1− p)N ≈ 69 or about 0.07%. So, the uncertainty in the observed success-rate,

as an estimate of the actual coverage probability, is about 0.14% (at approximately 95%

confidence level).

To investigate a method’s performance under different conditions, simulations have

been carried out with different Σ and ν. The covariance matrix was parameterised as

follows

Σ =

[

1 ρl

ρl l2

]

,

with ρ = 0.0, 0.2, 0.5, 0.8 and the standard uncertainty of the imaginary component

l = 1.0, 2.0, 4.0, 8.0. The degrees of freedom ν = 3, 5, 10, 50,∞.

1.4. Area as an additional performance measure

If two methods of calculating an uncertainty perform well in terms of coverage

probability, then the size of the uncertainty regions should be compared. Smaller regions

are desirable, because they are more informative about the location of the measurand.

For instance, if the areas of uncertainty regions generated by method ‘A’ are consistently

smaller than those generated by method ‘B’, while both methods achieve a satisfactory

coverage probability, then method ‘A’ would be preferred.

With this in mind, we have also recorded the mean area of the regions being studied

relative to the mean area of elliptical regions calculated from the same data.

2. Uncertainty ellipses

An ellipse is a commonly used confidence region for the mean of a bivariate Gaussian

distribution [2, Ch. 5]. An elliptical region may be expressed as the locus of points ξ

that satisfy

(ξ − x)′ v−1 (ξ − x) ≤ k2
ell,p , (1)
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where k2
ell,p is a coverage factor (squared) that scales the area of the region to achieve a

coverage probability p

k2
ell,p(ν) =

2ν

ν − 1
F2,ν−1(p) , (2)

F2,ν−1(p) is the upper 100p
th percentile of the F -distribution with numerator parameter

2 and denominator parameter ν − 1.

To determine whether a point ξ lies inside an elliptical uncertainty region centered

on x with a covariance matrix v, the Mahalanobis distance can be calculated

d(ξ) =

√

(ξ − x)′ v−1 (ξ − x) (3)

and if d(ξ) ≤ kell,p, then ξ is within the uncertainty region. The calculation required

to determine whether two ellipses overlap, and if so by how much, is rather more

complicated. So, in terms of reporting, it is probably best to directly record the

covariance matrix elements and the number of degrees of freedom, or coverage factor,

leaving the formulation of any calculations required to the recipient of a report.

2.1. Performance

No simulation results are presented in this section, because equation (1) describes the

construction of a confidence region for the mean of a bivariate Gaussian distribution

in classical statistics, and is exact [2]. For that reason, the success-rates obtained from

simulations would only differ from the nominal coverage probability because of the

inherent variability due to the finite number of simulations.

3. Uncertainty circles

In an alternative expression of equation (1),

(xre − ξre)
2

v11
+

(xim − ξim)
2

v22
− 2v21

(x− ξre)√
v11

(y − ξim)√
v22

= k2
ell,p , (4)

we see that when v21 = 0 the principal axes of the ellipse lie parallel to the real

and imaginary coordinate axes and when the uncertainties of the real and imaginary

components are equal (v11 = v22) the region becomes a circle. So, circular uncertainty

regions may be appropriate when the variance of measurement errors in the real and

imaginary components is approximately equal and the errors are independent.

Uncertainty circles were suggested some time ago and appear to be the only type of

region currently used to report the expanded uncertainty of complex quantities [4]. Only

the radius and level of confidence need be recorded, which makes reporting no more

complicated than for real-valued quantities. However, this reporting format provides

insufficient information to recover the covariance matrix elements, should they be needed

for further uncertainty calculations.



Expanded uncertainty regions for complex quantities 7

A circular uncertainty region with nominal coverage probability p can be

constructed by ignoring the covariance element and averaging the diagonal elements

of the covariance matrix. The circle radius is then

R = kell,p

√

v11 + v22
2

. (5)

This circle has a simple geometric interpretation. It has an area equal to the mean area

of the inscribing and circumscribing circles of the uncertainty ellipse, as shown in Fig. 1.

b

real

imag

Figure 1. The area of the grey uncertainty region is the mean area of the inscribed

and circumscribed circles (dashed). The major and minor ellipse axes align with the

covariance matrix eigenvectors. The lengths of these axes are proportional to the

square root of the corresponding eigenvalues.

3.1. Performance

Table 1 shows the estimated coverage probabilities for circular uncertainty regions. The

observed success rates are close nominal when degrees of freedom are high and errors

in the real and imaginary components are of similar magnitude. However, if errors in

the real and imaginary components are of different magnitudes, or if there is significant

correlation between them, the coverage probability drops below nominal when ν > 10.

Under the same conditions (l and ρ the same), coverage probability rises with decreasing

ν and so when errors in the real and imaginary components are of similar magnitude

coverage probabilities can be seen to rise significantly above nominal.

The mean area ratios are never less than unity, indicating that circle areas are,

on average, at least as big as the uncertainty ellipses, even when coverage probability

drops below nominal. When the coverage probability is well above nominal, the mean

area ratios data shows that the circles can become quite a lot larger than the equivalent

ellipses.

A drop in coverage probability of several percentage points below nominal is

unlikely to be acceptable, so a more conservative circular construction has also been
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success-rate mean area ratio

ν l ρ = 0.0 0.2 0.5 0.8 ρ = 0.0 0.2 0.5 0.8

500 1 0.9512 0.9497 0.9413 0.9266 1.00 1.02 1.16 1.67

2 0.9357 0.9355 0.9330 0.9235 1.25 1.28 1.45 2.09

4 0.9227 0.9235 0.9216 0.9194 2.13 2.17 2.46 3.55

8 0.9180 0.9189 0.9194 0.9182 4.07 4.16 4.70 6.78

50 1 0.9573 0.9549 0.9466 0.9333 1.02 1.04 1.18 1.70

2 0.9433 0.9414 0.9373 0.9301 1.28 1.30 1.47 2.13

4 0.9296 0.9278 0.9261 0.9249 2.17 2.21 2.50 3.61

8 0.9239 0.9254 0.9248 0.9248 4.15 4.23 4.78 6.91

10 1 0.9793 0.9779 0.9704 0.9563 1.11 1.13 1.28 1.85

2 0.9662 0.9643 0.9607 0.9520 1.39 1.42 1.60 2.31

4 0.9516 0.9532 0.9519 0.9480 2.36 2.41 2.73 3.93

8 0.9464 0.9468 0.9473 0.9470 4.52 4.61 5.20 7.54

5 1 0.9931 0.9932 0.9890 0.9795 1.25 1.28 1.44 2.08

2 0.9872 0.9862 0.9825 0.9774 1.56 1.60 1.80 2.60

4 0.9751 0.9759 0.9742 0.9703 2.66 2.71 3.07 4.42

8 0.9702 0.9694 0.9700 0.9697 5.09 5.17 5.88 8.47

3 1 0.9992 0.9991 0.9985 0.9966 1.50 1.53 1.73 2.49

2 0.9982 0.9980 0.9971 0.9948 1.87 1.92 2.16 3.12

4 0.9943 0.9942 0.9931 0.9911 3.18 3.25 3.69 5.32

8 0.9898 0.9895 0.9893 0.9889 6.10 6.24 7.06 10.2

Table 1. Observed success-rates for uncertainty circles with radii calculated using

equation (5) and the ratio of mean area to the mean area of elliptical regions. The

uncertainty in success-rates as estimates of coverage probability is approximately

0.0014.

studied. A circle circumscribing the uncertainty ellipse is guaranteed to provide coverage

probabilities that are never less than nominal.§ The radius of that circle is

Rmax = kell,p
√

max(λ1, λ2) , (6)

where λ1, λ2 are the eigenvalues of the covariance matrix v. Table 2 shows the results

obtained with these regions. As expected, the coverage probability now stays above

95%. However, the circle areas are considerably larger than the equivalent uncertainty

ellipses.

4. Uncertainty rectangles

A rectangular uncertainty region with sides parallel to the real and imaginary coordinate

axes can be reported as a pair of simultaneous uncertainty intervals for the real and

§ The locus of points covered by the enclosed ellipse is enough to achieve nominal coverage probability.
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success-rate mean area ratio

ν l ρ = 0.0 0.2 0.5 0.8 ρ = 0.0 0.2 0.5 0.8

500 1 0.9583 0.9713 0.9821 0.9851 1.06 1.23 1.74 3.01

2 0.9839 0.9832 0.9836 0.9851 2.01 2.07 2.49 3.92

4 0.9851 0.9849 0.9847 0.9856 4.01 4.10 4.70 6.95

8 0.9854 0.9857 0.9853 0.9856 8.02 8.19 9.29 13.5

50 1 0.9729 0.9769 0.9827 0.9854 1.20 1.31 1.78 3.07

2 0.9842 0.9838 0.9850 0.9857 2.05 2.12 2.55 4.00

4 0.9855 0.9846 0.9858 0.9860 4.09 4.18 4.80 7.08

8 0.9855 0.9857 0.9853 0.9863 8.16 8.34 9.46 13.7

10 1 0.9926 0.9926 0.9900 0.9883 1.54 1.61 2.03 3.38

2 0.9895 0.9896 0.9882 0.9879 2.30 2.37 2.81 4.37

4 0.9888 0.9883 0.9886 0.9884 4.48 4.58 5.25 7.74

8 0.9881 0.9882 0.9880 0.9884 8.89 9.10 10.3 15.0

5 1 0.9983 0.9980 0.9965 0.9934 1.92 1.98 2.40 3.85

2 0.9959 0.9958 0.9947 0.9928 2.68 2.76 3.24 4.96

4 0.9926 0.9922 0.9925 0.9912 5.06 5.18 5.94 8.70

8 0.9913 0.9911 0.9910 0.9912 10.0 10.3 11.6 16.9

3 1 0.9999 0.9997 0.9996 0.9988 2.50 2.57 3.04 4.71

2 0.9994 0.9993 0.9992 0.9980 3.36 3.42 3.98 6.01

4 0.9983 0.9977 0.9974 0.9963 6.15 6.30 7.16 10.5

8 0.9964 0.9963 0.9963 0.9957 12.0 12.3 14.0 20.3

Table 2. Estimated coverage probabilities for uncertainty circles that circumscribe

an uncertainty ellipse and the ratio of mean circle area to the mean area of elliptical

regions. The uncertainty in the estimates is approximately 0.0014.

imaginary components. It is then a simple matter to determine whether a complex

value is covered by a region, or whether two rectangular regions overlap and, if so, by

how much.

A rectangular region circumscribing an elliptical uncertainty region would be sure to

provide at least nominal coverage probability. However, using the Bonferroni inequality

a smaller region can be constructed that still achieves no less than nominal coverage

probability [2, §5.4]. The sides of such a rectangle are calculated using a coverage factor

kB,p = tν(α) ,

where α = (3 + p)/4 and tν(α) is the 100αth percentile of Student’s t-distribution with

ν degrees of freedom.‖
For a measured value x, with standard uncertainties u(xre) and u(xim), the

‖ Tables of univariate coverage factors can be used to find values for kB,p by looking up a coverage

factor for ν and p′ = (1 + p)/2. For example, kB,95 = 2.248 when ν = 500 and kB,95 = 4.177 when

ν = 3.
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uncertainty rectangle covers all complex values ξ where

ξre ∈ [xre − kB,pu(xre), xre + kB,pu(xre)] (7)

and simultaneously

ξim ∈ [xim − kB,pu(xim), xim + kB,pu(xim)] . (8)

4.1. Performance

success-rate mean area ratio

ν l ρ = 0.0 0.2 0.5 0.8 ρ = 0.0 0.2 0.5 0.8

500 1 0.9498 0.9511 0.9534 0.9599 1.07 1.09 1.23 1.78

2 0.9508 0.9515 0.9535 0.9587 1.07 1.09 1.23 1.78

4 0.9510 0.9511 0.9544 0.9615 1.07 1.09 1.23 1.78

8 0.9502 0.9508 0.9533 0.9596 1.07 1.09 1.23 1.78

50 1 0.9510 0.9526 0.9546 0.9607 1.06 1.08 1.22 1.77

2 0.9503 0.9511 0.9537 0.9599 1.06 1.08 1.22 1.77

4 0.9495 0.9517 0.9529 0.9598 1.06 1.08 1.22 1.77

8 0.9516 0.9514 0.9536 0.9600 1.06 1.08 1.22 1.77

10 1 0.9505 0.9513 0.9531 0.9596 0.987 1.01 1.15 1.70

2 0.9511 0.9522 0.9529 0.9590 0.987 1.01 1.15 1.70

4 0.9511 0.9499 0.9522 0.9582 0.987 1.01 1.15 1.70

8 0.9500 0.9509 0.9525 0.9580 0.987 1.01 1.15 1.70

5 1 0.9503 0.9514 0.9517 0.9569 0.831 0.850 0.984 1.48

2 0.9496 0.9502 0.9526 0.9582 0.830 0.851 0.985 1.47

4 0.9507 0.9492 0.9526 0.9576 0.830 0.851 0.985 1.48

8 0.9518 0.9517 0.9512 0.9562 0.831 0.853 0.984 1.47

3 1 0.9514 0.9515 0.9515 0.9550 0.496 0.510 0.597 0.916

2 0.9508 0.9499 0.9521 0.9554 0.496 0.509 0.598 0.919

4 0.9508 0.9512 0.9506 0.9549 0.495 0.510 0.598 0.919

8 0.9501 0.9501 0.9509 0.9539 0.496 0.509 0.595 0.918

Table 3. Observed success-rates for Bonferroni rectangles, calculated using

equations (7) and (8), and the ratio of mean area to the mean area of elliptical regions.

The uncertainty in success-rates as estimates of coverage probability is approximately

0.0014.

Table 3 shows the success-rates for uncertainty rectangles. The results indicate no

less than nominal coverage probability is obtained in all cases, as expected. However,

surprisingly, the mean area ratios become significantly less than unity when ν and ρ are

both small. In other words, uncertainty rectangles are more informative than ellipses

when there is little or no correlation between measurement errors and low degrees of

freedom. This behaviour is due to the way that the coverage factors kB·p and kell·p
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depend on ν. The ratio of rectangle to ellipse areas for a particular covariance matrix

v is

4

π

(

kB·p

kell·p

)2
1√

1− r2
,

where the correlation coefficient r =
√

(v12v21)/(v11v22). With p = 95% and ν = 500

the ratio

4

π

(

kB·p

kell·p

)2

= 1.0655 ,

but that falls to 0.3896 when ν = 3. So when measurement errors are only lightly

correlated, the mean of 1/
√
1− r2 values generated during the simulations is not enough

to compensate for this drop, and mean area ratios less than unity are observed.

5. Uncertainty parallelograms

Some information about uncertainty is ignored when constructing both uncertainty

circles and uncertainty rectangles, which could impact on the performance of uncertainty

calculations. So, we now consider the construction of parallelogrammatic uncertainty

regions that use all covariance matrix elements in their construction.

There is a number of ways to construct a parallelogram that circumscribes an

elliptical uncertainty region. In particular, one pair of sides may be chosen parallel to

a coordinate axis (real or imaginary) and the other sides aligned parallel to an ellipse

axis (see Fig. 2). Such a choice will simplify reporting, because the uncertainty of

one component is represented by an interval centered on the measured value, while

the uncertainty of the other component is represented by an interval located on a line

parallel to one ellipse axis and passing through the measured value. The slope of that

line depends on the correlation coefficient (or, equivalently, on v21).

For an uncertainty parallelogram centered on x, with a pair of sides parallel to the

imaginary axis, a point ξ inside the region must satisfy both

|xre − ξre| < U ♯
re (9)

and
∣

∣xim − β♯(xre − ξre)− ξim
∣

∣ < U ♯
im . (10)

The constants U ♯
re, U ♯

im depend on the covariance matrix elements and the coverage

factor for an ellipse,

U ♯
re = kell,p

√
v11

U ♯
im = kell,p

√

v22 − v221/v11

β♯ =
v21
v11

.

Similarly, for a parallelogram centered at z0, with a pair of sides parallel to the real

axis, a point ξ inside the region must satisfy
∣

∣xre − β♭(xim − ξim)− ξre
∣

∣ < U ♭
re (11)



Expanded uncertainty regions for complex quantities 12

b

real

imag

xre

xim

Figure 2. An uncertainty region constructed as a parallelogram with one pair of

sides parallel to the imaginary coordinate axis. The conventional uncertainty ellipse is

contained, ensuring that the coverage probability of the parallelogram is no less than

nominal.

and

|xim − ξim| < U ♭
im (12)

where,

U ♭
re = kell,p

√

v11 − v221/v22

U ♭
im = kell,p

√
v22

β♭ =
v21
v22

.

5.1. Performance

Table 4 shows the observed coverage probabilities, and the mean area ratios, for

parallelograms with one pair of sides parallel to the real axis. There was no apparent

difference between this data and the results obtained for parallelograms constructed

with a pair of sides parallel to the imaginary axis, so only one set of results is presented.

The coverage probability estimates are never less than nominal, as expected,

because these regions enclose the corresponding uncertainty ellipses. However, it is

interesting that the success-rates for a given ν appear to be independent of the covariance

matrix Σ. This suggests that there is a direct relationship between parallelogram

coverage factor and the parameters ν and p, as is the case for elliptical regions. It

is also notable that all the mean area ratios are constant. In fact, the parallelogram

area (for either type of construction) is

4k2
ell,p

√
v11v22 − v12v21 ,

while the area of the enclosed uncertainty ellipse is

πk2
ell,p

√
v11v22 − v12v21 ,

so the ratio 4/π = 1.27 is to be expected.
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success-rate mean area ratio

ν l ρ = 0.0 0.2 0.5 0.8 ρ = 0.0 0.2 0.5 0.8

500 1 0.9715 0.9713 0.9716 0.9720 1.27 1.27 1.27 1.27

2 0.9713 0.9712 0.9716 0.9709 1.27 1.27 1.27 1.27

4 0.9706 0.9714 0.9711 0.9714 1.27 1.27 1.27 1.27

8 0.9717 0.9719 0.9710 0.9710 1.27 1.27 1.27 1.27

50 1 0.9712 0.9705 0.9702 0.9711 1.27 1.27 1.27 1.27

2 0.9705 0.9709 0.9711 0.9698 1.27 1.27 1.27 1.27

4 0.9710 0.9714 0.9709 0.9708 1.27 1.27 1.27 1.27

8 0.9707 0.9708 0.9706 0.9703 1.27 1.27 1.27 1.27

10 1 0.9661 0.9667 0.9669 0.9657 1.27 1.27 1.27 1.27

2 0.9658 0.9678 0.9662 0.9669 1.27 1.27 1.27 1.27

4 0.9660 0.9672 0.9662 0.9669 1.27 1.27 1.27 1.27

8 0.9662 0.9667 0.9659 0.9665 1.27 1.27 1.27 1.27

5 1 0.9610 0.9601 0.9608 0.9600 1.27 1.27 1.27 1.27

2 0.9606 0.9603 0.9604 0.9603 1.27 1.27 1.27 1.27

4 0.9595 0.9609 0.9617 0.9616 1.27 1.27 1.27 1.27

8 0.9602 0.9597 0.9598 0.9612 1.27 1.27 1.27 1.27

3 1 0.9568 0.9552 0.9552 0.9542 1.27 1.27 1.27 1.27

2 0.9550 0.9544 0.9543 0.9557 1.27 1.27 1.27 1.27

4 0.9543 0.9548 0.9550 0.9548 1.27 1.27 1.27 1.27

8 0.9544 0.9549 0.9547 0.9544 1.27 1.27 1.27 1.27

Table 4. Estimates of coverage probability for parallelograms constructed using

equations (11) and (12), with sides parallel to the real coordinate axis, and the ratio of

mean area to the mean area of an elliptical region. The uncertainty in these estimates

of coverage probability is approximately 0.0014.

5.2. Improving performance

A simple numerical procedure has been used to chose coverage factors kpar,95, specific to

the parallelogrammatic shape, for different values of ν. The procedure is described in

Appendix A and the coverage factors obtained are reported in Table A1. Using these

coverage factors to construct parallelogrammatic regions, in place of kell,p, the success-

rates shown in Table 5 were obtained. The observed coverage probabilities are now

effectively nominal and the mean area ratios are significantly reduced, indicating that

the parallelogram areas are now only slightly bigger than the equivalent ellipses.

6. Discussion and conclusions

There does not appear to be a simple way to report the extent of an elliptical region

representing the expanded uncertainty of a complex quantity. So, depending on the

purpose of a measurement, the recipient of a report may find the alternative shapes
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success-rate mean area ratio

ν l ρ = 0.0 0.2 0.5 0.8 ρ = 0.0 0.2 0.5 0.8

500 1 0.9517 0.9498 0.9500 0.9504 1.06 1.06 1.06 1.06

2 0.9497 0.9505 0.9505 0.9510 1.06 1.06 1.06 1.06

4 0.9502 0.9496 0.9501 0.9499 1.06 1.06 1.06 1.06

8 0.9504 0.9501 0.9493 0.9491 1.06 1.06 1.06 1.06

50 1 0.9497 0.9490 0.9502 0.9500 1.06 1.06 1.06 1.06

2 0.9489 0.9510 0.9495 0.9486 1.06 1.06 1.06 1.06

4 0.9496 0.9494 0.9506 0.9504 1.06 1.06 1.06 1.06

8 0.9501 0.9496 0.9490 0.9485 1.06 1.06 1.06 1.06

10 1 0.9501 0.9500 0.9501 0.9485 1.06 1.06 1.06 1.06

2 0.9498 0.9490 0.9488 0.9507 1.06 1.06 1.06 1.06

4 0.9509 0.9499 0.9495 0.9512 1.06 1.06 1.06 1.06

8 0.9496 0.9493 0.9489 0.9502 1.06 1.06 1.06 1.06

5 1 0.9508 0.9500 0.9495 0.9508 1.08 1.08 1.08 1.08

2 0.9510 0.9501 0.9502 0.9505 1.08 1.08 1.08 1.08

4 0.9490 0.9504 0.9508 0.9500 1.08 1.08 1.08 1.08

8 0.9489 0.9495 0.9505 0.9513 1.08 1.08 1.08 1.08

3 1 0.9512 0.9492 0.9499 0.9489 1.14 1.14 1.14 1.14

2 0.9492 0.9507 0.9494 0.9498 1.14 1.14 1.14 1.14

4 0.9506 0.9506 0.9498 0.9505 1.14 1.14 1.14 1.14

8 0.9496 0.9493 0.9502 0.9497 1.14 1.14 1.14 1.14

Table 5. Estimated coverage probabilities for the same parallelogrammatic

constructions as reported in Table 4, but using the coverage factors reported in

Table A1. The uncertainty in the estimates of coverage probability is approximately

0.0014.

discussed here more convenient.

As mentioned in the Introduction, there are several reasons why circular uncertainty

regions may be appealing. Nevertheless, this study has found that they are not the bset

choice when full covariance matrix information is available, or when the number of

degrees of freedom is small. Circles do perform well over a narrow range of parameters

but can also provide coverage probabilities significantly above or below nominal in most

other cases. The observed coverage probabilities in this study varied from below 92%

to above 99%.

Rectangular uncertainty regions are a better choice. The sides of a rectangular

region can be reported as simultaneous uncertainty intervals for the real and imaginary

components, which is easy to use when comparing measurement results. Uncertainty

rectangles tend to be a little larger than the corresponding uncertainty ellipses under

most conditions, and can become much larger when there is strong correlation between

measurement errors. However, they can also become much smaller than ellipses when
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there is little or no correlation between errors and degrees of freedom are low. For

that reason, rectangular regions calculated using the Bonferroni coverage factor may be

preferred when there is clear evidence that measurement errors in the real and imaginary

components are independent.

The performance of parallelogrammatic uncertainty regions is consistent across

the range of error conditions studied. When ν is high and correlation between

errors is significant, parallelograms are the better choice and in the absence of

strong correlation at high degrees of freedom, the difference in performance between

rectangles and parallelograms is not significant. A format for reporting the extent

of a parallelogrammatic region has been given that is concise and simple. So, these

constructions offer a useful alternative to elliptical uncertainty regions. The table of

parallelogrammatic coverage factors reported here, at a coverage probability of 95%,

allows these regions to be constructed so that their areas are only slightly larger than

the equivalent ellipses.

In conclusion, both a rectangular uncertainty region, with sides parallel to the

real and imaginary component axes, and a parallelogrammatic uncertainty region, with

a pair of sides parallel to one component axis, offer practical ways of reporting an

expanded measurement uncertainty for complex quantities. On the other hand, the

coverage probability of circular uncertainty regions varies by several percentage points

above and below nominal, depending on the distribution of measurement errors and

the number of degrees of freedom, and so this shape of uncertainty region is less

satisfactory. The study found that parallelograms perform well over a broad range

of conditions, while rectangular regions can produce smaller regions, and hence more

informative results, in certain cases. The study also suggests that there are unique

values for the coverage factor for parallelogrammatic regions that depend only on the

degrees of freedom and desired coverage probability. Numerical estimates of the 95%

coverage factors for parallelogrammatic regions have been tabulated.
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Appendix A. Estimated coverage factors for uncertainty parallelograms

The results obtained in §5.1 suggest that there is a unique coverage factor for

parallelogrammatic uncertainty regions kpar·p that depends only on the degrees of

freedom ν and the required coverage probability. A simple optimization procedure

has been used here to estimate this coverage factor.

Varying the value of coverage factor used in the construction of parallelograms

described in §5 gives rise to different success-rates in the simulations of §1.3. So, it is

possible to search for a value that gives a success-rates close to 95%. We have done this

for simulations using the same set of parameterizations of Σ (l ∈ {1.0, 2.0, 4.0, 8.0} and

ρ ∈ {0.0, 0.2, 0.5, 0.8}). For each value of ν, this produced 16 estimates of kpar·95 that

varied slightly due to the randomness inherent in the simulation process. The mean of

these 16 values is reported as kpar·95 in Table A1. The standard error se (the sample

standard deviation divided by
√
16) is also reported.

ν kpar·95 se ν kpar·95 se ν kpar·95 se

3 7.147 0.012 15 2.581 0.001 90 2.286 0.001

4 4.690 0.006 16 2.559 0.002 100 2.281 0.001

5 3.845 0.002 17 2.533 0.002 120 2.274 0.001

6 3.421 0.003 18 2.515 0.001 140 2.266 0.001

7 3.169 0.003 19 2.499 0.001 160 2.267 0.001

8 3.007 0.002 20 2.486 0.002 180 2.259 0.001

9 2.893 0.002 30 2.394 0.001 200 2.259 0.001

10 2.807 0.002 40 2.352 0.001 300 2.251 0.001

11 2.742 0.001 50 2.326 0.001 400 2.247 0.001

12 2.691 0.002 60 2.312 0.001 500 2.244 0.001

13 2.648 0.002 70 2.300 0.001 inf 2.236 0.001

14 2.613 0.001 80 2.293 0.001

Table A1. Coverage factors for 95% parallelogrammatic uncertainty regions at

different degrees of freedom ν. The parallelograms are constructed as described in

§5. The column headed kpar·95 is the average of 16 values obtained for different l and

ρ, the column headed se is the standard error of kpar·95.
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